Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (33335011) | ||||||||||||
Authors | Roth KG, Mambetsariev I, Salgia R | ||||||||||||
Title | Prolonged survival and response to tepotinib in a non-small-cell lung cancer patient with brain metastases harboring MET exon 14 mutation: a research report. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Tyrosine kinase inhibitors (TKIs) have transformed the standard of care in lung cancer. A number of TKIs have been discovered that specifically target oncogenes, including MET receptor tyrosine kinase. Second-generation MET TKIs are showing improved efficacy over first-generation TKIs. Herein, we report a case of a patient with metastatic lung adenocarcinoma harboring a MET exon 14 splice site mutation who has had prolonged disease control by a second-generation MET-TKI tepotinib. A 66-yr-old man was diagnosed with stage IV lung adenocarcinoma. He was started on carboplatin, paclitaxel, and bevacizumab, but had severe toxicity. He was switched to pembrolizumab as his tumor was PD-L1 70%, and molecular testing was not yet performed because of insufficient tissue. A bronchoscopy with endobronchial ultrasound was performed and a MET exon 14 splice site mutation was detected by next-generation sequencing. Upon progression, he was then enrolled in a clinical trial of tepotinib and continues with stable disease for more than 45 cycles and 31 mo. The MET receptor tyrosine kinase and the ligand hepatocyte growth factor (HGF) have been implicated as oncogenes and drivers of non-small-cell lung cancer (NSCLC). Newer MET TKIs including capmatinib and tepotinib more recently showed not only improved localized control and response, but early data suggests intracranial activity as compared to first-generation MET TKIs, both in the front-line and the refractory setting. This is a case report demonstrating an effective duration of response in a patient with widely metastatic lung adenocarcinoma harboring a MET exon 14 mutation. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
CD274 positive | lung adenocarcinoma | sensitive | Pembrolizumab | Case Reports/Case Series | Actionable | In a clinical case study, a patient with CD274 (PD-L1)-positive (70% tumor cells) metastatic lung adenocarcinoma treated with Keytruda (pembrolizumab) achieved a complete response in multiple brain metastases prior to disease progression in a primary lung lesion after 9 months of treatment, but was subsequently treated with Tepmetko (tepotinib) due to the presence of a MET exon 14 skipping mutation, which resulted in prolonged disease stabilization with no recurrence of brain lesions (PMID: 33335011). | 33335011 |