Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (30266815)
Authors Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu HY, Spillinger A, Shah AT, Tanasa B, Straessler K, Hazard FK, Spunt SL, Marina N, Kim GE, Cho SJ, Avedian RS, Mohler DG, Kim MO, DuBois SG, Hawkins DS, Sweet-Cordero EA
Title Genome-Informed Targeted Therapy for Osteosarcoma.
URL
Abstract Text Osteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identified, suggesting that genes within SCNAs are key oncogenic drivers in this disease. SCNAs and structural rearrangements are highly heterogeneous across osteosarcoma cases, suggesting the need for a genome-informed approach to targeted therapy. To identify patient-specific candidate drivers, we used a simple heuristic based on degree and rank order of copy-number amplification (identified by whole-genome sequencing) and changes in gene expression as identified by RNA sequencing. Using patient-derived tumor xenografts, we demonstrate that targeting of patient-specific SCNAs leads to significant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma. SIGNIFICANCE: Osteosarcoma is treated with a chemotherapy regimen established 30 years ago. Although osteosarcoma is genomically complex, we hypothesized that tumor-specific dependencies could be identified within SCNAs. Using patient-derived tumor xenografts, we found a high degree of response for "genome-matched" therapies, demonstrating the utility of a targeted genome-informed approach.This article is highlighted in the In This Issue feature, p. 1.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
PTEN loss osteosarcoma sensitive MK2206 Preclinical - Pdx Actionable In a preclinical study, a patient derived xenograft (PDX) model of osteosarcoma with biallelic loss of PTEN was sensitive to treatment with MK2206, demonstrating reduced tumor growth and increased apoptotic activity (PMID: 30266815). 30266815
PTEN loss osteosarcoma sensitive Sirolimus Preclinical - Pdx Actionable In a preclinical study, a patient derived xenograft (PDX) model of osteosarcoma with biallelic PTEN loss was sensitive to treatment with Rapamune (sirolimus), demonstrating reduced tumor growth and increased apoptotic activity (PMID: 30266815). 30266815