Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (37463056) | ||||||||||||
Authors | Singh H, Keller RB, Kapner KS, Dilly J, Raghavan S, Yuan C, Cohen EF, Tolstorukov M, Andrews E, Brais LK, da Silva A, Perez K, Rubinson DA, Surana R, Giannakis M, Ng K, Clancy TE, Yurgelun MB, Schlechter BL, Clark JW, Shapiro GI, Rosenthal MH, Hornick JL, Nardi V, Li YY, Gupta H, Cherniack AD, Meyerson M, Cleary JM, Nowak JA, Wolpin BM, Aguirre AJ | ||||||||||||
Title | Oncogenic Drivers and Therapeutic Vulnerabilities in KRAS Wild-Type Pancreatic Cancer. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Approximately 8% to 10% of pancreatic ductal adenocarcinomas (PDAC) do not harbor mutations in KRAS. Understanding the unique molecular and clinical features of this subset of pancreatic cancer is important to guide patient stratification for clinical trials of molecularly targeted agents.We analyzed a single-institution cohort of 795 exocrine pancreatic cancer cases (including 785 PDAC cases) with a targeted multigene sequencing panel and identified 73 patients (9.2%) with KRAS wild-type (WT) pancreatic cancer.Overall, 43.8% (32/73) of KRAS WT cases had evidence of an alternative driver of the MAPK pathway, including BRAF mutations and in-frame deletions and receptor tyrosine kinase fusions. Conversely, 56.2% of cases did not harbor a clear MAPK driver alteration, but 29.3% of these MAPK-negative KRAS WT cases (12/41) demonstrated activating alterations in other oncogenic drivers, such as GNAS, MYC, PIK3CA, and CTNNB1. We demonstrate potent efficacy of pan-RAF and MEK inhibition in patient-derived organoid models carrying BRAF in-frame deletions. Moreover, we demonstrate durable clinical benefit of targeted therapy in a patient harboring a KRAS WT tumor with a ROS1 fusion. Clinically, patients with KRAS WT tumors were significantly younger in age of onset (median age: 62.6 vs. 65.7 years; P = 0.037). SMAD4 mutations were associated with a particularly poor prognosis in KRAS WT cases.This study defines the genomic underpinnings of KRAS WT pancreatic cancer and highlights potential therapeutic avenues for future investigation in molecularly directed clinical trials. See related commentary by Kato et al., p. 4527. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
BRAF N486_P490del | pancreatic ductal adenocarcinoma | sensitive | Trametinib | Preclinical - Patient cell culture | Actionable | In a preclinical study, a pancreatic ductal adenocarcinoma patient-derived organoid model harboring BRAF N486_P490del was sensitive to treatment with Mekinist (trametinib) in culture, demonstrating decreased cell viability (PMID: 37463056). | 37463056 |
BRAF N486_P490del | pancreatic ductal adenocarcinoma | sensitive | Ulixertinib | Preclinical - Patient cell culture | Actionable | In a preclinical study, a pancreatic ductal adenocarcinoma patient-derived organoid model harboring BRAF N486_P490del was sensitive to treatment with Ulixertinib (BVD-523) in culture, demonstrating decreased cell viability (PMID: 37463056). | 37463056 |