Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (37463056)
Authors Singh H, Keller RB, Kapner KS, Dilly J, Raghavan S, Yuan C, Cohen EF, Tolstorukov M, Andrews E, Brais LK, da Silva A, Perez K, Rubinson DA, Surana R, Giannakis M, Ng K, Clancy TE, Yurgelun MB, Schlechter BL, Clark JW, Shapiro GI, Rosenthal MH, Hornick JL, Nardi V, Li YY, Gupta H, Cherniack AD, Meyerson M, Cleary JM, Nowak JA, Wolpin BM, Aguirre AJ
Title Oncogenic Drivers and Therapeutic Vulnerabilities in KRAS Wild-Type Pancreatic Cancer.
URL
Abstract Text Approximately 8% to 10% of pancreatic ductal adenocarcinomas (PDAC) do not harbor mutations in KRAS. Understanding the unique molecular and clinical features of this subset of pancreatic cancer is important to guide patient stratification for clinical trials of molecularly targeted agents.We analyzed a single-institution cohort of 795 exocrine pancreatic cancer cases (including 785 PDAC cases) with a targeted multigene sequencing panel and identified 73 patients (9.2%) with KRAS wild-type (WT) pancreatic cancer.Overall, 43.8% (32/73) of KRAS WT cases had evidence of an alternative driver of the MAPK pathway, including BRAF mutations and in-frame deletions and receptor tyrosine kinase fusions. Conversely, 56.2% of cases did not harbor a clear MAPK driver alteration, but 29.3% of these MAPK-negative KRAS WT cases (12/41) demonstrated activating alterations in other oncogenic drivers, such as GNAS, MYC, PIK3CA, and CTNNB1. We demonstrate potent efficacy of pan-RAF and MEK inhibition in patient-derived organoid models carrying BRAF in-frame deletions. Moreover, we demonstrate durable clinical benefit of targeted therapy in a patient harboring a KRAS WT tumor with a ROS1 fusion. Clinically, patients with KRAS WT tumors were significantly younger in age of onset (median age: 62.6 vs. 65.7 years; P = 0.037). SMAD4 mutations were associated with a particularly poor prognosis in KRAS WT cases.This study defines the genomic underpinnings of KRAS WT pancreatic cancer and highlights potential therapeutic avenues for future investigation in molecularly directed clinical trials. See related commentary by Kato et al., p. 4527.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
BRAF N486_P490del pancreatic ductal adenocarcinoma sensitive Trametinib Preclinical - Patient cell culture Actionable In a preclinical study, a pancreatic ductal adenocarcinoma patient-derived organoid model harboring BRAF N486_P490del was sensitive to treatment with Mekinist (trametinib) in culture, demonstrating decreased cell viability (PMID: 37463056). 37463056
BRAF N486_P490del pancreatic ductal adenocarcinoma sensitive Ulixertinib Preclinical - Patient cell culture Actionable In a preclinical study, a pancreatic ductal adenocarcinoma patient-derived organoid model harboring BRAF N486_P490del was sensitive to treatment with Ulixertinib (BVD-523) in culture, demonstrating decreased cell viability (PMID: 37463056). 37463056