Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (25477533)
Authors Liyasova MS, Ma K, Lipkowitz S
Title Molecular pathways: cbl proteins in tumorigenesis and antitumor immunity-opportunities for cancer treatment.
URL
Abstract Text The Cbl proteins are a family of ubiquitin ligases (E3s) that regulate signaling through many tyrosine kinase-dependent pathways. A predominant function is to negatively regulate receptor tyrosine kinase (RTK) signaling by ubiquitination of active RTKs, targeting them for trafficking to the lysosome for degradation. Also, Cbl-mediated ubiquitination can regulate signaling protein function by altered cellular localization of proteins without degradation. In addition to their role as E3s, Cbl proteins play a positive role in signaling by acting as adaptor proteins that can recruit signaling molecules to the active RTKs. Cbl-b, a second family member, negatively regulates the costimulatory pathway of CD8 T cells and also negatively regulates natural killer cell function. The different functions of Cbl proteins and their roles both in the development of cancer and the regulation of immune responses provide multiple therapeutic opportunities. Mutations in Cbl that inactivate the negative E3 function while maintaining the positive adaptor function have been described in approximately 5% of myeloid neoplasms. An improved understanding of how the signaling pathways [e.g., Fms-like tyrosine kinase 3 (Flt3), PI3K, and signal transducer and activator of transcription (Stat)] are dysregulated by these mutations in Cbl has helped to identify potential targets for therapy of myeloid neoplasms. Conversely, the loss of Cbl-b leads to increased adaptive and innate antitumor immunity, suggesting that inhibiting Cbl-b may be a means to increase antitumor immunity across a wide variety of tumors. Thus, targeting the pathways regulated by Cbl proteins may provide attractive opportunities for treating cancer.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Gene Name Source Synonyms Protein Domains Gene Description Gene Role
CBL NCBI C-CBL|CBL2|FRA11B|NSLL|RNF55 CBL, Cbl proto-oncogene, is an E3 ubiquitin-protein ligase involved in cell signaling and ubiquitination of tyrosine kinases (PMID: 23085373). CBL mutations, often resulting in a loss of function, have been identified primarily in myeloid neoplasms, including myelodysplastic syndrome, acute myeloid leukemia, chronic myeloid leukemia, myelofibrosis, and juvenile myelomonocytic leukemia (PMID: 25477533). Both: Oncogene and Tumor suppressor
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References