Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (19018267) | ||||||||||||
Authors | Nakayama N, Nakayama K, Yeasmin S, Ishibashi M, Katagiri A, Iida K, Fukumoto M, Miyazaki K | ||||||||||||
Title | KRAS or BRAF mutation status is a useful predictor of sensitivity to MEK inhibition in ovarian cancer. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | This study examined the status of KRAS and BRAF mutations, in relation to extracellular signal-regulated protein kinase (ERK) activation in 58 ovarian carcinomas to clarify the clinicopathological and prognostic significance of KRAS/BRAF mutations. Somatic mutations of either KRAS or BRAF were identified in 12 (20.6%) out of 58 ovarian carcinomas. The frequency of KRAS/BRAF mutations in conventional serous high-grade carcinomas (4.0% : 1/25) was significantly lower than that in the other histological type (32.3% : 10/31). Phosphorylated ERK1/2 (p-ERK1/2) expression was identified in 18 (38.2%) out of 45 ovarian carcinomas. KRAS/BRAF mutation was significantly correlated with International Federation of Gynecology and Obstetrics (FIGO) stage I, II (P<0.001), and p-ERK1/2 (P<0.001). No significant correlations between KRAS/BRAF mutations or p-ERK1/2 expression and overall survival were found in patients with ovarian carcinoma treated with platinum and taxane chemotherapy (P=0.2460, P=0.9339, respectively). Next, to clarify the roles of ERK1/2 activation in ovarian cancers harbouring KRAS or BRAF mutations, we inactivated ERK1/2 in ovarian cancer cells using CI-1040. Cl-1040 is a compound that selectively inhibits MAP kinase kinase (MEK), an upstream regulator of ERK1/2, and thus prevents ERK1/2 activation. Profound growth inhibition and apoptosis were observed in CI-1040-treated cancer cells with mutations in either KRAS or BRAF in comparison with the ovarian cancer cells containing wild-type sequences. This was evident in both in vitro and in vivo studies. The findings in this study indicate that an activated ERK1/2 pathway is critical to tumour growth and survival of ovarian cancers with KRAS or BRAF mutations. Furthermore, they suggest that the CI-1040-induced phenotypes depend on the mutational status of KRAS and BRAF in ovarian cancers. Therefore, ovarian cancer patients with KRAS or BRAF mutations may benefit from CI-1040 treatment. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
BRAF V600E | ovarian cancer | sensitive | CI-1040 | Preclinical - Cell line xenograft | Actionable | In a preclinical study, CI-1040 inhibited growth of a human ovarian cancer cell line harboring BRAF V600E in culture, and inhibited tumor growth in xenograft models (PMID: 19018267). | 19018267 |