Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (40327322) | ||||||||||||
Authors | Zhang W, Li L, Muftuoglu M, Basyal M, Togashi N, Iwanaga K, Tanzawa F, Numata M, Bixby DL, Erba HP, Podoltsev N, Schiller GJ, Kumar P, Lesegretain A, Isoyama T, Seki T, Daver N, Andreeff M | ||||||||||||
Title | Synergistic Activity of Combined FLT3-ITD and MDM2 Inhibition with Quizartinib and Milademetan in FLT3-ITD Mutant/TP53 Wild-type Acute Myeloid Leukemias. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Acute myeloid leukemia (AML) is characterized by frequent mutations in FMS-like tyrosine kinase 3 (FLT3), overexpression of murine double minute 2 (MDM2), and TP53 wild-type (WT). Monotherapies targeting FLT3 frequently result in the development of resistant disease. In this study, we investigated the antileukemic efficacy of co-targeting FLT3 and MDM2 with quizartinib and milademetan (Q/M) in FLT3 internal tandem duplication (FLT3-ITD) AML cell lines, xenograft and patient-derived xenograft (PDX) models, and a phase I clinical trial.Preclinical studies used human and murine cell lines carrying FLT3-ITD and/or tyrosine kinase domain mutations, TP53 WT/knockdown, leukemia cell xenograft models, and a PDX model. Assays were conducted using milademetan (DS-3032b) and murine-specific MDM2 inhibitor (DS-5272). An open-label, phase I, dose-escalation clinical trial (ClinicalTrials.gov NCT03552029) was conducted.Dual inhibition of FLT3-ITD and MDM2 synergistically induced apoptosis in FLT3-ITD/TP53 WT AML and venetoclax-resistant cell lines, reduced tumor burden, and improved survival in xenograft and PDX models of FLT3-ITD AML. Phase I clinical data indicated favorable safety and tolerability for the Q/M combination treatment. Complete responses with incomplete hematologic recovery were achieved in 40% of patients with relapsed/refractory AML. Unsupervised single-cell proteomic analysis showed that Q/M treatment decreased the expression of prosurvival proteins (p-ERK, p-AKT, and Mcl-1) and activated protein signaling downstream of p53 including p53 upregulated modulator of apoptosis. YTHDF2 was increased after therapy in resistant cells. The Q/M combination demonstrated higher activity in CD34+ versus CD34- leukemia blasts.Preclinical and mechanistic rationale and preliminary clinical data support the future development of MDM2/FLT3-targeting strategies for FLT3-mutant AML. |