Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (25838391)
Authors Napolitano S, Martini G, Rinaldi B, Martinelli E, Donniacuo M, Berrino L, Vitagliano D, Morgillo F, Barra G, De Palma R, Merolla F, Ciardiello F, Troiani T
Title Primary and Acquired Resistance of Colorectal Cancer to Anti-EGFR Monoclonal Antibody Can Be Overcome by Combined Treatment of Regorafenib with Cetuximab.
URL
Abstract Text In colorectal cancer, the activation of the intracellular RAS-RAF and PIK3CA-AKT pathways has been implicated in the resistance to anti-EGFR mAbs. We have investigated the role of regorafenib, an oral multikinase inhibitor, in combination with cetuximab, an anti-EGFR mAb, to overcome anti-EGFR resistance.We have tested, in vitro and in vivo, the effects of regorafenib in a panel of human colorectal cancer cell lines with a KRAS mutation (SW480, SW620, HCT116, LOVO, and HCT15) or with a BRAF mutation (HT29), as models of intrinsic resistance to cetuximab treatment, and in two human colorectal cancer cell lines (GEO and SW48) that are cetuximab-sensitive, as well as in their derived cells with acquired resistance to cetuximab (GEO-CR and SW48-CR).Treatment with regorafenib determined a dose-dependent growth inhibition in all colorectal cancer cell lines. The combined treatment with cetuximab and regorafenib induced synergistic antiproliferative and apoptotic effects in cetuximab-resistant cell lines by blocking MAPK and AKT pathways. Nude mice were injected s.c. with HCT116, HCT15, GEO-CR, and SW48-CR cells. The combined treatment caused significant tumor growth inhibition. Synergistic antitumor activity of regorafenib plus cetuximab was also observed in an orthotopic colorectal cancer model of HCT116 cells. In particular, the combined treatment induced a significant tumor growth inhibition in the primary tumor site (cecum) and completely prevented metastasis formation.The combined treatment with cetuximab and regorafenib could be a strategy to overcome resistance to anti-EGFR therapies in metastatic colorectal cancer patients.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
BRAF V600E PIK3CA P449T colorectal cancer resistant Cetuximab Preclinical Actionable In a preclinical study, human colorectal cancer cells harboring BRAF V600E and PIK3CA P449T were resistant to Erbitux (cetuximab) in culture (PMID: 25838391). 25838391
BRAF V600E PIK3CA P449T colorectal cancer sensitive Cetuximab + Regorafenib Preclinical Actionable In a preclinical study, the combination of Erbitux (cetuximab) and Stivarga (regorafenib) inhibited growth, reduced Akt and Mapk phosphorylation, and induced apoptosis of human colorectal cancer cell lines harboring BRAF V600E and PIK3CA P449T in culture (PMID: 25838391). 25838391
BRAF V600E PIK3CA P449T colorectal cancer resistant Regorafenib Preclinical Actionable In a preclinical study, human colorectal cancer cells harboring BRAF V600E and PIK3CA P449T were resistant to Stivarga (regorafenib) in culture (PMID: 25838391). 25838391