Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (21389100) | ||||||||||||
Authors | Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M | ||||||||||||
Title | MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine (GEM) using a panel of p53-deficient and p53 wild-type human pancreatic cancer xenografts.Nine individual patient-derived pancreatic cancer xenografts (6 with p53-deficient and 3 with p53 wild-type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, GEM, or GEM followed 24 hour later by MK-1775, for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by Western blotting and immunohistochemistry.MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with GEM, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and GEM-treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of GEM with MK-1775 produced robust antitumor activity and remarkably enhanced tumor regression response (4.01-fold) compared to GEM treatment in p53-deficient tumors. Tumor regrowth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of GEM. None of the agents produced tumor regressions in p53 wild-type xenografts.These results indicate that MK-1775 selectively synergizes with GEM to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
TP53 loss | pancreatic cancer | sensitive | Adavosertib + Gemcitabine | Preclinical - Pdx | Actionable | In a preclinical study, the combination of Adavosertib (MK-1775) and Gemzar (gemcitabine) inhibited Wee1 expression, Cdc2 phosphorylation, and tumor growth in several patient-derived xenograft models of pancreatic cancer harboring TP53 mutations (PMID: 21389100). | 21389100 |