Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (27466356) | ||||||||||||
Authors | Wheler JJ, Janku F, Naing A, Li Y, Stephen B, Zinner R, Subbiah V, Fu S, Karp D, Falchook GS, Tsimberidou AM, Piha-Paul S, Anderson R, Ke D, Miller V, Yelensky R, Lee JJ, Hong D, Kurzrock R | ||||||||||||
Title | TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | TP53 tumor-suppressor gene mutations are among the most frequent abnormalities in cancer, affecting approximately 40% of patients. Yet, there is no accepted way to target these alterations in the clinic. At the same time, antagonists of VEGFR or its ligand are best-selling oncology drugs, with multiple, expensive compounds approved. Although only a subset of patients benefit from these antiangiogenesis agents, no relevant biomarker has been identified. Interestingly, TP53 mutations upregulate VEGF-A and VEGFR2. We prospectively enrolled 500 patients, to be interrogated by comprehensive genomic profiling (CGP) (next-generation sequencing, 236 genes), and to be matched, whenever possible, with targeted agents. Herein, we analyze outcomes based on VEGF/VEGFR inhibitor treatment and presence of TP53 mutations. Of the 500 patients, 188 (37.6%; with ≥1 alteration) were treated; 106 (56% of 188) had tumors that harbored TP53 mutations. VEGF/VEGFR inhibitor therapy was independently associated with improvement in all outcome parameters [rate of stable disease (SD) ≥6 months/partial and complete remission (PR/CR); (31% versus 7%; TP53-mutant patients (who received no other molecular-matched agents) treated with versus without VEGF/VEGFR inhibitors), time-to-treatment failure, and overall survival (multivariate analysis: all P ≤ 0.01)] for the patients harboring TP53-mutant cancers, but improvement was not seen in any of these parameters for patients with TP53 wild-type neoplasms. We conclude that TP53 mutations predict sensitivity to VEGF/VEGFR inhibitors in the clinic. TP53 alterations may therefore be a ready biomarker for treatment with antiangiogenesis agents, a finding of seminal importance across the cancer field. Mol Cancer Ther; 15(10); 2475-85. ©2016 AACR. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
TP53 mutant | Advanced Solid Tumor | sensitive | Unspecified VEGFR inhibitor | Clinical Study - Cohort | Actionable | In a clinical study, VEGF/VEGFR inhibitor treatment resulted in improved rates of response (stable disease over 6 months/partial/complete response, 31% vs 7%), time-to-treatment failure, and overall survival (both p<0.01) compared to control in patients with TP53 mutant advanced solid tumors (n=106), but not in patients with TP53 wild-type tumors (n=82) (PMID: 27466356). | 27466356 |