Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (23056499)
Authors Couto JP, Almeida A, Daly L, Sobrinho-Simões M, Bromberg JF, Soares P
Title AZD1480 blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines.
URL
Abstract Text Persistent RET activation is a frequent event in papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC). In these cancers, RET activates the ERK/MAPK, the PI3K/AKT/mTOR and the JAK/STAT3 pathways. Here, we tested the efficacy of a JAK1/2- inhibitor, AZD1480, in the in vitro and in vivo growth of thyroid cancer cell lines expressing oncogenic RET. Thyroid cancer cell lines harboring RET/PTC1 (TPC-1), RET M918T (MZ-CRC1) and RET C634W (TT) alterations, as well as TPC-1 xenografts, were treated with JAK inhibitor, AZD1480. This inhibitor led to growth inhibition and/or apoptosis of the thyroid cancer cell lines in vitro, as well as to tumor regression of TPC-1 xenografts, where it efficiently blocked STAT3 activation in tumor and stromal cells. This inhibition was associated with decreased proliferation, decreased blood vessel density, coupled with increased necrosis. However, AZD1480 repressed the growth of STAT3- deficient TPC-1 cells in vitro and in vivo, demonstrating that its effects in this cell line were independent of STAT3 in the tumor cells. In all cell lines, the JAK inhibitor reduced phospho-Y1062 RET levels, and mTOR effector phospho-S6, while JAK1/2 downregulation by siRNA did not affect cell growth nor RET and S6 activation. In conclusion, AZD1480 effectively blocks proliferation and tumor growth of activated RET- thyroid cancer cell lines, likely through direct RET inhibition in cancer cells as well as by modulation of the microenvironment (e.g. via JAK/phospho-STAT3 inhibition in endothelial cells). Thus, AZD1480 should be considered as a therapeutic agent for the treatment of RET- activated thyroid cancers.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
RET M918T medullary thyroid carcinoma sensitive AZD1480 Preclinical - Cell culture Actionable In a preclinical study, AZD1480 reduced phosphorylation of RET and downstream effectors, and inhibited growth and increased apoptosis of a medullary thyroid cancer cell line harboring RET M918T in culture (PMID: 23056499). 23056499
RET C634W thyroid cancer sensitive AZD1480 Preclinical - Cell culture Actionable In a preclinical study, AZD1480 reduced phosphorylation of RET and downstream effectors, and inhibited growth and increased apoptosis of a thyroid cancer cell line harboring RET C634W in culture (PMID: 23056499). 23056499