Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (27486174) | ||||||||||||
Authors | Rebello RJ, Kusnadi E, Cameron DP, Pearson HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J, Sandhu S, Risbridger GP, Pearson RB, Hannan RD, Furic L | ||||||||||||
Title | The Dual Inhibition of RNA Pol I Transcription and PIM Kinase as a New Therapeutic Approach to Treat Advanced Prostate Cancer. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | The MYC oncogene is frequently overexpressed in prostate cancer. Upregulation of ribosome biogenesis and function is characteristic of MYC-driven tumors. In addition, PIM kinases activate MYC signaling and mRNA translation in prostate cancer and cooperate with MYC to accelerate tumorigenesis. Here, we investigate the efficacy of a single and dual approach targeting ribosome biogenesis and function to treat prostate cancer.The inhibition of ribosomal RNA (rRNA) synthesis with CX-5461, a potent, selective, and orally bioavailable inhibitor of RNA polymerase I (Pol I) transcription, has been successfully exploited therapeutically but only in models of hematologic malignancy. CX-5461 and CX-6258, a pan-PIM kinase inhibitor, were tested alone and in combination in prostate cancer cell lines, in Hi-MYC- and PTEN-deficient mouse models and in patient-derived xenografts (PDX) of metastatic tissue obtained from a patient with castration-resistant prostate cancer.CX-5461 inhibited anchorage-independent growth and induced cell-cycle arrest in prostate cancer cell lines at nanomolar concentrations. Oral administration of 50 mg/kg CX-5461 induced TP53 expression and activity and reduced proliferation (MKI67) and invasion (loss of ductal actin) in Hi-MYC tumors, but not in PTEN-null (low MYC) tumors. While 100 mg/kg CX-6258 showed limited effect alone, its combination with CX-5461 further suppressed proliferation and dramatically reduced large invasive lesions in both models. This rational combination strategy significantly inhibited proliferation and induced cell death in PDX of prostate cancer.Our results demonstrate preclinical efficacy of targeting the ribosome at multiple levels and provide a new approach for the treatment of prostate cancer. Clin Cancer Res; 22(22); 5539-52. ©2016 AACR. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
PTEN loss | prostate cancer | predicted - sensitive | CX-6258 | Preclinical | Actionable | In a preclinical study, CX-6258 treatment resulted in decreased carcinoma in situ in PTEN deficient transgenic animal model of prostate cancer (PMID: 27486174). | 27486174 |
PTEN loss | prostate cancer | no benefit | CX-5461 | Preclinical | Actionable | In a preclinical study, CX-5461 treatment did not result in histological change in PTEN deficient transgenic animal model of prostate cancer (PMID: 27486174). | 27486174 |
PTEN loss | prostate cancer | predicted - sensitive | CX-5461 + CX-6258 | Preclinical | Actionable | In a preclinical study, CX-6258 and CX-5461 combination treatment resulted in decreased tumor burden in PTEN deficient transgenic animal model of prostate cancer (PMID: 27486174). | 27486174 |