Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (27872130) | ||||||||||||
Authors | Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, Morales-Barrera R, Sanchis-García JM, Musib L, Budha N, Zhu J, Nannini M, Chan WY, Sanabria Bohórquez SM, Meng RD, Lin K, Yan Y, Patel P, Baselga J, Tabernero J, Cervantes A | ||||||||||||
Title | A First-in-Human Phase I Study of the ATP-Competitive AKT Inhibitor Ipatasertib Demonstrates Robust and Safe Targeting of AKT in Patients with Solid Tumors. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Activation of AKT signaling by PTEN loss or PIK3CA mutations occurs frequently in human cancers, but targeting AKT has been difficult due to the mechanism-based toxicities of inhibitors that target the inactive conformation of AKT. Ipatasertib (GDC-0068) is a novel selective ATP-competitive small-molecule inhibitor of AKT that preferentially targets active phosphorylated AKT (pAKT) and is potent in cell lines with evidence of AKT activation. In this phase I study, ipatasertib was well tolerated; most adverse events were gastrointestinal and grade 1-2 in severity. The exposures of ipatasertib ≥200 mg daily in patients correlated with preclinical TGI90, and pharmacodynamic studies confirmed that multiple targets (i.e., PRAS40, GSK3β, and mTOR) were inhibited in paired on-treatment biopsies. Preliminary antitumor activity was observed; 16 of 52 patients (30%), with diverse solid tumors and who progressed on prior therapies, had radiographic stable disease, and many of their tumors had activation of AKT.Potent inhibition of AKT signaling with ipatasertib was associated with a tolerable safety profile and meaningful disease control in a subgroup of patients. Targeting pAKT with an ATP-competitive inhibitor provides a greater therapeutic window than allosteric inhibitors. Further investigation with ipatasertib is ongoing in phase II studies. Cancer Discov; 7(1); 102-13. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
PTEN loss | prostate cancer | sensitive | Ipatasertib | Case Reports/Case Series | Actionable | In a Phase I trial, a patient with castration resistant prostate cancer harboring a loss of PTEN demonstrated an improved prostate specific antigen when treated with Ipatasertib (GDC-0068) (PMID: 27872130). | 27872130 |