Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (28446642)
Authors Swick AD, Prabakaran PJ, Miller MC, Javaid AM, Fisher MM, Sampene E, Ong IM, Hu R, Iida M, Nickel KP, Bruce JY, Wheeler DL, Kimple RJ
Title Cotargeting mTORC and EGFR Signaling as a Therapeutic Strategy in HNSCC.
URL
Abstract Text Head and neck squamous cell carcinomas (HNSCC) are frequently altered along the PI3K/AKT/mTORC signaling axis. Despite excellent preclinical data, the use of compounds targeting this pathway as monotherapy has been underwhelming in initial clinical trials, and identification of predictive biomarkers remains challenging. To investigate mTORC-specific inhibition, we tested catalytic mTORC (AZD8055) and PI3K/mTORC (NVP-BEZ-235) inhibitors ± cetuximab in a panel of HNSCC cell lines and patient-derived xenografts (PDX). Cell lines were assayed for response to all agents and siRNA knockdown of targets by multiple approaches. All cell lines showed similar response to both drug and siRNA inhibition of both PI3K and mTORC pathways, with anti-EGFR combination producing modest additive effect. Five PDX models that presented PIK3CA mutation or intrinsic cetuximab resistance were treated with a combination of cetuximab and AZD8055. In vivo single-agent mTORC inhibition inhibited growth of one PIK3CA-mutant cancer, but had little effect on any PIK3CAWT or a second PIK3CA-mutant model. In all models, the combination therapy showed greater growth delay than monotherapy. The uniform ability of PI3K and mTORC inhibition to suppress the growth of HNSCC cells highlights the pathway's role in driving proliferation. Although single-agent therapy was largely ineffective in vivo, improved response of combination treatment in an array of PDXs suggests the potential for adding a catalytic mTORC inhibitor to cetuximab therapy. Overall, these results add to a growing body of evidence, suggesting that approaches that attempt to match biomarkers to the optimal therapy in HNSCC remain complex and challenging. Mol Cancer Ther; 16(7); 1257-68. ©2017 AACR.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
PIK3CA amp head and neck squamous cell carcinoma sensitive Dactolisib Preclinical - Cell culture Actionable In a preclinical study, BEZ235 resulted in antiproliferative activity in head and neck squamous cell carcinoma cells harboring PIK3CA amplification in culture (PMID: 28446642). 28446642
PTEN loss head and neck squamous cell carcinoma predicted - sensitive Dactolisib Preclinical - Cell culture Actionable In a preclinical study, BEZ235 resulted in antiproliferative activity in head and neck squamous cell carcinoma cells harboring PTEN loss in culture (PMID: 28446642). 28446642
PIK3CA amp head and neck squamous cell carcinoma predicted - sensitive AZD8055 Preclinical - Cell culture Actionable In a preclinical study, treatment with AZD8055 resulted in antiproliferative activity in head and neck squamous cell carcinoma cells harboring PIK3CA amplification in culture (PMID: 28446642). 28446642
PIK3CA act mut head and neck squamous cell carcinoma predicted - sensitive AZD8055 + Cetuximab Preclinical - Pdx Actionable In a preclinical study, two head and neck squamous cell carcinoma patient-derived xenograft (PDX) models harboring a PIK3CA activating mutation demonstrated greater delayed tumor growth when treated with a combination of AZD8055 and Erbitux (cetuximab) compared to either agent alone (PMID: 28446642). 28446642
PTEN loss head and neck squamous cell carcinoma predicted - sensitive AZD8055 Preclinical - Cell culture Actionable In a preclinical study, treatment with AZD8055 resulted in antiproliferative activity in head and neck squamous cell carcinoma cells harboring PTEN loss in culture (PMID: 28446642). 28446642