Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (20664172)
Authors Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, Russo M, Cancelliere C, Zecchin D, Mazzucchelli L, Sasazuki T, Shirasawa S, Geuna M, Frattini M, Baselga J, Gallicchio M, Biffo S, Bardelli A
Title Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus.
URL
Abstract Text Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
PIK3CA act mut Advanced Solid Tumor sensitive Everolimus Preclinical - Cell line xenograft Actionable In a preclinical study, Afinitor (everolimus) demonstrated efficacy in multiple cancer cell lines in culture and xenograft models with PIK3CA activating mutations (PMID: 20664172). 20664172
PIK3CA E545K breast cancer sensitive Everolimus Preclinical Actionable In a preclinical study, breast cancer cell lines harboring a PIK3CA E545K mutation had increased sensitivity to Afinitor (everolimus) in culture (PMID: 20664172). 20664172
BRAF V600E PTEN loss melanoma predicted - resistant Everolimus Case Reports/Case Series Actionable In a retrospective analysis, a melanoma patient harboring PTEN loss and BRAF V600E demonstrated resistance to Afinitor (everolimus) treatment, resulting in progressive disease (PMID: 20664172). 20664172