Reference Detail

Contact

Missing content? – Request curation!

Request curation for specific Genes, Variants, or PubMed publications.

Have questions, comments, or suggestions? - Let us know!

Email us at : ckbsupport@genomenon.com

Ref Type Journal Article
PMID (25487917)
Authors Li C, Liu L, Liang L, Xia Z, Li Z, Wang X, McGee LR, Newhall K, Sinclair A, Kamb A, Wickramasinghe D, Dai K
Title AMG 925 is a dual FLT3/CDK4 inhibitor with the potential to overcome FLT3 inhibitor resistance in acute myeloid leukemia.
URL
Abstract Text Resistance to FLT3 inhibitors is a serious clinical issue in treating acute myelogenous leukemia (AML). AMG 925, a dual FLT3/CDK4 inhibitor, has been developed to overcome this resistance. It is hypothesized that the combined inhibition of FLT3 and CDK4 may reduce occurrence of the FLT3 resistance mutations, and thereby prolong clinical responses. To test this hypothesis, we attempted to isolate AML cell clones resistant to AMG 925 or to FLT3 inhibitors. After a selection of over 8 months with AMG 925, we could only isolate partially resistant clones. No new mutations in FLT3 were found, but a 2- to 3-fold increase in total FLT3 protein was detected and believed to contribute to the partial resistance. In contrast, selection with the FLT3 inhibitors sorafenib or AC220 (Quizartinib), led to a resistance and the appearance of a number of mutations in FLT3 kinase domains, including the known hot spot sites D835 and F691. However, when AC220 was combined with the CDK4 inhibitor PD0332991 (palbociclib) at 0.1 μmol/L or higher, no resistance mutations were obtained, indicating that the CDK4-inhibiting activity of AMG 925 contributed to the failure to develop drug resistance. AMG 925 was shown to potently inhibit the FLT3 inhibitor-resistant mutation D835Y/V. This feature of AMG 925 was also considered to contribute to the lack of resistance mutations to the compound. Together, our data suggest that AMG 925 has the potential to reduce resistance mutations in FLT3 and may prolong clinical responses.

Filtering

  • Case insensitive filtering will display rows if any text in any cell matches the filter term
  • Use simple literal full or partial string matches
  • Separate multiple filter terms with a space. Any order may be used (i. e. a b c and c b a are equivalent )
  • Filtering will only apply to rows that are already loaded on the page. Filtering has no impact on query parameters.
  • Use quotes to match on a longer phrase with spaces (i.e. "mtor c1483f")

Sorting

  • Generally, the default sort order for tables is set to be first column ascending; however, specific tables may set a different default sort order.
  • Click on any column header arrows to sort by that column
  • Hold down the Shift key and click multiple columns to sort by more than one column. Be sure to set ascending or descending order for a given column before moving on to the next column.

Molecular Profile Treatment Approach
Gene Name Source Synonyms Protein Domains Gene Description Gene Role
Therapy Name Drugs Efficacy Evidence Clinical Trials
Drug Name Trade Name Synonyms Drug Classes Drug Description
Gene Variant Impact Protein Effect Variant Description Associated with drug Resistance
FLT3 N841K missense unknown FLT3 N841K lies within the activation loop of the protein kinase domain of the Flt3 protein (PMID: 25837374). N841K has been demonstrated to occur as a secondary resistance mutation in the context of FLT3 internal tandem duplication (FLT3-ITD) mutations (PMID: 25847190, PMID: 25487917), but has not been biochemically characterized and therefore, its effect on Flt3 protein function is unknown (PubMed, May 2024). Y
FLT3 Y842D missense unknown FLT3 Y842D lies within the protein kinase domain of the Flt3 protein (UniProt.org). Y842D has been demonstrated to occur as a secondary resistance mutation in the context of FLT3 internal tandem duplication (FLT3-ITD) mutations (PMID: 19318574, PMID: 25487917), but has not been biochemically characterized and therefore, its effect on Flt3 protein function is unknown (PubMed, May 2024). Y
Molecular Profile Indication/Tumor Type Response Type Therapy Name Approval Status Evidence Type Efficacy Evidence References
FLT3 exon 14 ins FLT3 Y842D hematologic cancer resistant Quizartinib Preclinical - Cell culture Actionable In a preclinical study, FLT3 Y842D was identified as a secondary mutation in transformed hematologic cells expressing FLT3-ITD that acquired resistance to Vanflyta (quizartinib) in culture (PMID: 25487917). 25487917