Starting April 21, you’ll be asked to log in or sign up for a free account after viewing 10 content pages each month.
Don’t worry—creating an account is quick and easy, and it comes with added benefits! Once logged in, you’ll not only continue accessing the content you already enjoy, but you’ll also unlock exclusive features like interactive donut plots for variant protein effects and variant impacts across the gene.
Stay tuned for these updates, and thank you for being part of our community!
Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (29339439) | ||||||||||||
Authors | Molenaar RJ, Radivoyevitch T, Nagata Y, Khurshed M, Przychodzen B, Makishima H, Xu M, Bleeker FE, Wilmink JW, Carraway HE, Mukherjee S, Sekeres MA, van Noorden CJF, Maciejewski JP | ||||||||||||
Title | IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Purpose: Somatic mutations in IDH1/2 occur in approximately 20% of patients with myeloid neoplasms, including acute myeloid leukemia (AML). IDH1/2MUT enzymes produce D-2-hydroxyglutarate (D2HG), which associates with increased DNA damage and improved responses to chemo/radiotherapy and PARP inhibitors in solid tumor cells. Whether this also holds true for IDH1/2MUT AML is not known.Experimental Design: Well-characterized primary IDH1MUT, IDH2MUT, and IDH1/2WT AML cells were analyzed for DNA damage and responses to daunorubicin, ionizing radiation, and PARP inhibitors.Results:IDH1/2MUT caused increased DNA damage and sensitization to daunorubicin, irradiation, and the PARP inhibitors olaparib and talazoparib in AML cells. IDH1/2MUT inhibitors protected against these treatments. Combined treatment with a PARP inhibitor and daunorubicin had an additive effect on the killing of IDH1/2MUT AML cells. We provide evidence that the therapy sensitivity of IDH1/2MUT cells was caused by D2HG-mediated downregulation of expression of the DNA damage response gene ATM and not by altered redox responses due to metabolic alterations in IDH1/2MUT cells.Conclusions:IDH1/2MUT AML cells are sensitive to PARP inhibitors as monotherapy but especially when combined with a DNA-damaging agent, such as daunorubicin, whereas concomitant administration of IDH1/2MUT inhibitors during cytotoxic therapy decrease the efficacy of both agents in IDH1/2MUT AML. These results advocate in favor of clinical trials of PARP inhibitors either or not in combination with daunorubicin in IDH1/2MUT AML. Clin Cancer Res; 24(7); 1705-15. ©2018 AACR. |