Starting April 21, you’ll be asked to log in or sign up for a free account after viewing 10 content pages each month.
Don’t worry—creating an account is quick and easy, and it comes with added benefits! Once logged in, you’ll not only continue accessing the content you already enjoy, but you’ll also unlock exclusive features like interactive donut plots for variant protein effects and variant impacts across the gene.
Stay tuned for these updates, and thank you for being part of our community!
Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (23786770) | ||||||||||||
Authors | Liao RG, Jung J, Tchaicha J, Wilkerson MD, Sivachenko A, Beauchamp EM, Liu Q, Pugh TJ, Pedamallu CS, Hayes DN, Gray NS, Getz G, Wong KK, Haddad RI, Meyerson M, Hammerman PS | ||||||||||||
Title | Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | A comprehensive description of genomic alterations in lung squamous cell carcinoma (lung SCC) has recently been reported, enabling the identification of genomic events that contribute to the oncogenesis of this disease. In lung SCC, one of the most frequently altered receptor tyrosine kinase families is the fibroblast growth factor receptor (FGFR) family, with amplification or mutation observed in all four family members. Here, we describe the oncogenic nature of mutations observed in FGFR2 and FGFR3, each of which are observed in 3% of samples, for a mutation rate of 6% across both genes. Using cell culture and xenograft models, we show that several of these mutations drive cellular transformation. Transformation can be reversed by small-molecule FGFR inhibitors currently being developed for clinical use. We also show that mutations in the extracellular domains of FGFR2 lead to constitutive FGFR dimerization. In addition, we report a patient with an FGFR2-mutated oral SCC who responded to the multitargeted tyrosine kinase inhibitor pazopanib. These findings provide new insights into driving oncogenic events in a subset of lung squamous cancers, and recommend future clinical studies with FGFR inhibitors in patients with lung and head and neck SCC. |