Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (31345255) | ||||||||||||
Authors | Kanemaru Y, Natsumeda M, Okada M, Saito R, Kobayashi D, Eda T, Watanabe J, Saito S, Tsukamoto Y, Oishi M, Saito H, Nagahashi M, Sasaki T, Hashizume R, Aoyama H, Wakai T, Kakita A, Fujii Y | ||||||||||||
Title | Dramatic response of BRAF V600E-mutant epithelioid glioblastoma to combination therapy with BRAF and MEK inhibitor: establishment and xenograft of a cell line to predict clinical efficacy. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Epithelioid glioblastoma is a rare aggressive variant of glioblastoma (GBM) characterized by a dismal prognosis of about 6 months and frequent leptomeningeal dissemination. A recent study has revealed that 50% of epithelioid GBMs harbor three genetic alterations - BRAF V600E mutation, TERT promoter mutations, and homozygous deletions of CDKN2A/2B. Emerging evidence support the effectiveness of targeted therapies for brain tumors with BRAF V600E mutation. Here we describe a dramatic radiographical response to combined therapy with BRAF and MEK inhibitors in a patient with epithelioid GBM harboring BRAF V600E mutation, characterized by thick spinal dissemination. From relapsed tumor procured at autopsy, we established a cell line retaining the BRAF V600E mutation, TERT promoter mutation and CDKN2A/2B loss. Intracranial implantation of these cells into mice resulted in tumors closely resembling the original, characterized by epithelioid tumor cells and dissemination, and invasion into the perivascular spaces. We then confirmed the efficacy of treatment with BRAF and MEK inhibitor both in vitro and in vivo. Epithelioid GBM with BRAF V600E mutation can be considered a good treatment indication for precision medicine, and this patient-derived cell line should be useful for prediction of the tumor response and clarification of its biological characteristics. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
BRAF V600E | glioblastoma | sensitive | Dabrafenib + Trametinib | Case Reports/Case Series | Actionable | In a clinical case study, combination therapy of Tafinlar (dabrafenib) and Mekinist (trametinib) resulted in improved clinical symptoms in a patient with epithelioid glioblastoma harboring BRAF V600E, and treatment of the patient's cells resulted in decreased cell viability, reduced phosphorylation of Mek and Erk, increased apoptotic activity compared to either agent alone, and cell cycle arrest in culture, and led to tumor growth suppression in the patient-derived xenograft (PDX) model (PMID: 31345255). | 31345255 |