Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (35689816) | ||||||||||||
Authors | Ma X, Ma X, Chin L, Zhu Z, Han H | ||||||||||||
Title | A Novel Germline Deletion of p.C630 in RET Causes MTC and Promotes Cell Proliferation and Sensitivity to Pralsetinib. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Medullary thyroid cancer (MTC) is usually caused by gain-of-function mutations in the proto-oncogene RET.This study aimed to determine the underlying mechanism in a male patient diagnosed with MTC at age 51 years.Genomic DNA extracted from leukocytes or tumor tissues of patients was used for next-generation sequencing (NGS)-panel sequencing and Sanger sequencing. Wild-type (WT) and p.C630 deletion RET were expressed in HEK 293T cells. Activation of phosphorylation of the crucial tyrosine-905 of RET and MAPK/ERK was analyzed by Western blotting. The effect of RET mutants on cell viability and colony formation ability was determined by CCK8 assay and a colony forming assay.NGS-Panel sequencing revealed a 3-nucleotide/1-amino acid C630 in-frame deletion in exon 11 of RET (c.1887_1889delGTG p.C630del). In vitro expression showed that phosphorylation of the crucial tyrosine 905 was much stronger in the p.C630del RET mutant than in WT RET, indicating ligand-independent activation of the Ret protein tyrosine kinase. Furthermore, p.C630del RET mutant induced strong activation of the MAPK/ERK pathway. In addition, p.C630del RET mutant cells exhibited increased HEK 293T cell viability and colony formation compared with WT RET cells. Pralsetinib (BLU-667), a highly selective RET inhibitor, inhibited the viability of WT RET and p.C630del RET mutant-transfected HEK 293T cells (IC50s: 18.54 and 16.49 µM after treatment for 24 hours), followed by inhibition of the RET-induced MAPK/ERK pathway.The finding in our patient with MTC was a 3-base-pair deletion in exon 11 of RET, a p.C630 deletion not previously reported. The p.C630del RET stimulates cell proliferation by increasing ligand-independent phosphorylation and activation of MAPK/ERK pathway, demonstrating the pathogenic nature of the mutation. We therefore recommend screening panel sequence of RET in MTC patients with indications of a genetic cause. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|---|---|---|---|---|
RET | C630del | deletion | gain of function | RET C630del results in the deletion of an amino acid in the cysteine-rich region of the Ret protein at amino acid 630 (UniProt.org). C630del results in increased Ret phosphorylation, downstream signaling, viability, and colony formation in cultured cells (PMID: 35689816). |
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
RET C630del | Advanced Solid Tumor | sensitive | Pralsetinib | Preclinical - Cell culture | Actionable | In a preclinical study, Gavreto (pralsetinib) treatment inhibited Ret phosphorylation and downstream signaling and resulted in decreased cell viability and colony formation in cells expressing RET C630del in culture (PMID: 35689816). | 35689816 |