Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (37392657) | ||||||||||||
Authors | Choi YJ, Park J, Choi H, Oh SJ, Park JH, Park M, Kim JW, Kim YG, Kim YC, Kim MJ, Kang KW | ||||||||||||
Title | PLM-101 is a novel and potent FLT3/RET inhibitor with less adverse effects in the treatment of acute myeloid leukemia. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Acute myeloid leukemia (AML) is a prevalent form of leukemia in adults. As its survival rate is low, there is an urgent need for new therapeutic options. In AML, FMS-like tyrosine kinase 3 (FLT3) mutations are common and have negative outcomes. However, current FLT3-targeting agents, Midostaurin and Gilteritinib, face two significant issues, specifically the emergence of acquired resistance and drug-related adverse events leading to treatment failure. Rearranged during transfection (RET), meanwhile, is a proto-oncogene linked to various types of cancer, but its role in AML has been limited. A previous study showed that activation of RET kinase enhances FLT3 protein stability, leading to the promotion of AML cell proliferation. However, no drugs are currently available that target both FLT3 and RET. This study introduces PLM-101, a new therapeutic option derived from the traditional Chinese medicine indigo naturalis with potent in vitro and in vivo anti-leukemic activities. PLM-101 potently inhibits FLT3 kinase and induces its autophagic degradation via RET inhibition, providing a superior mechanism to that of FLT3 single-targeting agents. Single- and repeated-dose toxicity tests conducted in the present study showed no significant drug-related adverse effects. This study is the first to present a new FLT3/RET dual-targeting inhibitor, PLM-101, that shows potent anti-leukemic activity and fewer adverse effects. PLM-101, therefore, should be considered for use as a potential therapeutic agent for AML. |