Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (39145064) | ||||||||||||
Authors | Lim SH, Lee SY, Hong JY, Lee J, Kim ST | ||||||||||||
Title | CDK4/6 inhibition to resensitize BRAF/EGFR inhibitor in patient-derived BRAF/PTEN-mutant colon cancer cells. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | In v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant colorectal cancer (CRC), encorafenib-cetuximab has been established as standard second-line therapy, but not all patients respond and the duration of response is relatively short. Overcoming intrinsic or acquired resistance to BRAF/EGFR inhibitors is crucial for enhancing treatment outcomes in metastatic BRAF-mutated CRC. The aim of the study is to investigate the resistance mechanisms in BRAF-mutant CRC patient refractory to BRAF/EGFR targeted therapy.We established patient-derived cells (PDCs) from a patient with BRAF/PTEN-mutant metastatic colon cancer who progressed rapidly on encorafenib plus cetuximab. To explore potential treatment options for inherent resistance caused by simultaneous PTEN mutation in BRAF-mutated CRC, we conducted cell viability assays using PDCs treated with encorafenib-cetuximab in combination with a cyclin-dependent kinase-4 and 6 (CDK4/6) inhibitor.The patient's tumor had concurrent PTEN loss-of-function alteration at diagnosis and PDCs were generated from ascites after resistance to the BRAF/EGFR inhibitor. The PDCs were resistant to the encorafenib-cetuximab combination even at a high concentration of cetuximab (up to 500 µg/mL). Adding the CDK4/6 inhibitor, ribociclib, to encorafenib-cetuximab showed a synergistic effect in a proliferation assay. Ribociclib plus encorafenib-cetuximab represented a significantly lower expression of Ki-67 compared to the dual combination alone. An MTS assay showed that triplet therapy with ribociclib, encorafenib, and cetuximab suppressed cell viability more efficiently than the two-drug combinations. Investigating the combined effect of triplet therapy using the calculated combination index (CI) showed that ribociclib had a synergistic effect with encorafenib-cetuximab when applied to PDCs with a concurrent BRAF/PTEN mutation.Our results suggest that combining the CDK4/6 inhibitor with the BRAF/EGFR inhibitor might be a novel treatment strategy for concomitant BRAF and PTEN-mutant CRC. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
BRAF V600E PTEN R173C | colorectal cancer | sensitive | Cetuximab + Encorafenib + Ribociclib | Preclinical - Patient cell culture | Actionable | In a preclinical study, the combination of Kisqali (ribociclib), Erbitux (cetuximab), and Braftovi (encorafenib) inhibited proliferation and synergistically decreased viability in a patient-derived colorectal cancer cell line harboring BRAF V600E and PTEN R173C (PMID: 39145064). | 39145064 |