Starting April 21, you’ll be asked to log in or sign up for a free account after viewing 10 content pages each month.
Don’t worry—creating an account is quick and easy, and it comes with added benefits! Once logged in, you’ll not only continue accessing the content you already enjoy, but you’ll also unlock exclusive features like interactive donut plots for variant protein effects and variant impacts across the gene.
Stay tuned for these updates, and thank you for being part of our community!
Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (26415585) | ||||||||||||
Authors | Kiel MJ, Sahasrabuddhe AA, Rolland DC, Velusamy T, Chung F, Schaller M, Bailey NG, Betz BL, Miranda RN, Porcu P, Byrd JC, Medeiros LJ, Kunkel SL, Bahler DW, Lim MS, Elenitoba-Johnson KS | ||||||||||||
Title | Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Sézary syndrome (SS) is an aggressive leukaemia of mature T cells with poor prognosis and limited options for targeted therapies. The comprehensive genetic alterations underlying the pathogenesis of SS are unknown. Here we integrate whole-genome sequencing (n=6), whole-exome sequencing (n=66) and array comparative genomic hybridization-based copy-number analysis (n=80) of primary SS samples. We identify previously unknown recurrent loss-of-function aberrations targeting members of the chromatin remodelling/histone modification and trithorax families, including ARID1A in which functional loss from nonsense and frameshift mutations and/or targeted deletions is observed in 40.3% of SS genomes. We also identify recurrent gain-of-function mutations targeting PLCG1 (9%) and JAK1, JAK3, STAT3 and STAT5B (JAK/STAT total ∼11%). Functional studies reveal sensitivity of JAK1-mutated primary SS cells to JAK inhibitor treatment. These results highlight the complex genomic landscape of SS and a role for inhibition of JAK/STAT pathways for the treatment of SS. |
Molecular Profile | Treatment Approach |
---|
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|---|---|---|---|---|
JAK3 | S989I | missense | unknown | JAK3 S989I lies within protein kinase domain 2 of the Jak3 protein (UniProt.org). S989I has been identified in the scientific literature (PMID: 26415585), but has not been biochemically characterized and therefore, its effect on Jak3 protein function is unknown (PubMed, Dec 2024). | |
JAK3 | Y1023H | missense | unknown | JAK3 Y1023H lies within protein kinase domain 2 of the Jak3 protein (UniProt.org). Y1023H has been identified in sequencing studies (PMID: 26415585, PMID: 25801821), but has not been biochemically characterized and therefore, its effect on Jak3 protein function is unknown (PubMed, Dec 2024). | |
TET2 | P174H | missense | unknown | TET2 P174H does not lie within any known functional domains of the Tet2 protein (UniProt.org). P174H has been identified in sequencing studies (PMID: 26415585), but has not been biochemically characterized and therefore, its effect on Tet2 protein function is unknown (PubMed, Dec 2024). |
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|