Missing content? – Request curation!
Request curation for specific Genes, Variants, or PubMed publications.
Have questions, comments, or suggestions? - Let us know!
Email us at : ckbsupport@genomenon.com
Ref Type | Journal Article | ||||||||||||
PMID | (18632602) | ||||||||||||
Authors | Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, Ding L, Mardis ER, Wilson RK, Solit D, Levine R, Michel K, Thomas RK, Rusch VW, Ladanyi M, Pao W | ||||||||||||
Title | Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. | ||||||||||||
|
|||||||||||||
URL | |||||||||||||
Abstract Text | Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non-small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal-regulated kinase (ERK)-1/2 in human 293T cells and to growth factor-independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma. |
Gene Name | Source | Synonyms | Protein Domains | Gene Description | Gene Role |
---|
Therapy Name | Drugs | Efficacy Evidence | Clinical Trials |
---|
Drug Name | Trade Name | Synonyms | Drug Classes | Drug Description |
---|
Gene | Variant | Impact | Protein Effect | Variant Description | Associated with drug Resistance |
---|---|---|---|---|---|
MAP2K1 | K57N | missense | gain of function | MAP2K1 K57N lies within the negative regulatory region of the Map2k1 protein (PMID: 24241536). K57N confers a gain of function to Map2k1 as demonstrated by increased autophosphorylation (PMID: 29753091) and Erk phosphorylation (PMID: 18632602, PMID: 29753091), increased cell proliferation and cell viability in two different cell lines (PMID: 29533785, PMID: 18632602), transformation of cultured cells (PMID: 25351745, PMID: 36442478), increased proliferation in a competition assay (PMID: 36442478), and demonstrates resistance to some Mek and Braf inhibitors (PMID: 29753091, PMID: 36442478). | Y |
Molecular Profile | Indication/Tumor Type | Response Type | Therapy Name | Approval Status | Evidence Type | Efficacy Evidence | References |
---|---|---|---|---|---|---|---|
MAP2K1 K57N | lung adenocarcinoma | sensitive | Selumetinib | Preclinical - Cell culture | Actionable | In a preclinical study, Koselugo (selumetinib) inhibited phosphorylation of ERK in cells expressing MAP2K1 K57N and inhibited MAP2K1 K57N-dependent growth in cell culture (PMID: 18632602). | 18632602 |